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Abstract
We prove some general results about the relation between the 1-cocycles of an
arbitrary Lie algebroid A over M and the leaves of the Lie algebroid foliation on
M associated with A. Using these results, we show that a E1(M)-Dirac structure
L induces on every leaf F of its characteristic foliation a E1(F )-Dirac structure
LF , which comes from a precontact structure or from a locally conformal
presymplectic structure on F. In addition, we prove that a Dirac structure L̃ on
M × R can be obtained from L and we discuss the relation between the leaves
of the characteristic foliations of L and L̃.

PACS numbers: 02.20.Sv, 02.40.Ma, 02.40.Vh
Mathematics Subject Classification: 17B63, 17B66, 53C12, 53D10, 53D17

1. Introduction

The fundamental role that Poisson algebras play in Dirac’s theory of constrained Hamiltonian
systems is well known [5]. Two natural ways for Poisson algebras to arise from a manifold M
are through Poisson or presymplectic structures on M. Both structures are examples of Dirac
structures in the sense of Courant–Weinstein [2, 3]. A Dirac structure on a manifold M is a
vector sub-bundle L̃ of T M ⊕ T ∗M that is maximally isotropic under the natural symmetric
pairing on T M ⊕ T ∗M and such that the space of sections of L̃, 	(L̃), is closed under the
Courant bracket [,]∼ on 	(T M ⊕T ∗M) (see section 2.3, example 1). If L̃ is a Dirac structure
on M, then L̃ is endowed with a Lie algebroid structure over M and the leaves of the induced
Lie algebroid foliation FL̃ on M are presymplectic manifolds (see [2]). In the particular case
when the Dirac structure L̃ comes from a Poisson structure 
 on M, then L̃ is isomorphic to
the cotangent Lie algebroid associated with 
 and FL̃ is just the symplectic foliation of M
(see [2]).

An algebraic treatment of Dirac structures was developed by Dorfman in [6] using the
notion of a complex over a Lie algebra. This treatment was applied to the study of general
Hamiltonian structures and their role in integrability. More recently, the properties of the
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Courant bracket [,]∼ have been systematized by Liu et al [23] in the definition of a Courant
algebroid structure on a vector bundle E → M (see also [24, 30]). The natural example
of a Courant algebroid is the Whitney sum E = A ⊕ A∗, where the pair (A, A∗) is a Lie
bialgebroid over M in the sense of Mackenzie–Xu [26].

On the other hand, a Jacobi structure on a manifold M is a local Lie algebra structure,
in the sense of Kirillov [19], on the space C∞(M, R) (see [4, 13, 22]; for an algebraic
formulation of Jacobi structures, see [9]). We recall that a local Lie algebra structure on
C∞(M, R) is a Lie bracket which acts as a local operator on each of its arguments. Very
recently, Grabowski and Marmo [12] proved that it is possible to skip the skew-symmetry
assumption in the definition of a local Lie algebra (see also [10] for the particular case of a
Poisson algebra). Apart from Poisson manifolds, interesting examples of Jacobi manifolds
are contact and locally conformal symplectic manifolds. In fact, a Jacobi structure on M
defines a generalized foliation, the characteristic foliation of M, whose leaves are contact or
locally conformal symplectic manifolds [13, 19]. Moreover, the 1-jet bundle T ∗M × R → M

is a Lie algebroid and the corresponding Lie algebroid foliation is just the characteristic
foliation of M (see [18]). However, for a Jacobi manifold M the vector bundle T ∗M is not, in
general, a Lie algebroid and, in addition, if one considers the usual Lie algebroid structure on
T M × R then the pair (T M × R, T ∗M × R) is not a Lie bialgebroid (see [16, 34]). Thus,
it seems reasonable to introduce a proper definition of a Dirac structure on the vector bundle
E1(M) = (T M × R) ⊕ (T ∗M × R) (a E1(M)-Dirac structure in our terminology). This job
was done by Wade in [35]. A E1(M)-Dirac structure is a vector sub-bundle L of E1(M) that
is maximally isotropic under the natural symmetric pairing of E1(M) and such that the space
	(L) is closed under a suitable bracket [,] on 	(E1(M)) (this bracket may be defined using the
general algebraic constructions of Dorfman [6]). Apart from E1(M)-Dirac structures which
come from Dirac structures on M or from Jacobi structures, other examples can be obtained
from a homogeneous Poisson structure on M, from a 1-form on M (a precontact structure
in our terminology) or from a locally conformal presymplectic (lcp) structure, that is, a pair
(, ω), where  is a 2-form on M, ω is a closed 1-form and d = ω ∧  (see [35]).

If L is a E1(M)-Dirac structure, [,]L is the restriction to 	(L) × 	(L) of the extended
Courant bracket [,] and ρL is the restriction to L of the canonical projection ρ : E1(M) → T M ,
then the triple (L, [,]L, ρL) is a Lie algebroid over M (see [35]). Using the same terminology
as in the Jacobi case, the Lie algebroid foliation FL on M associated with L is called the
characteristic foliation of L. An important remark is that the section φL of the dual bundle
L∗ defined by φL(e) = f , for e = (X, f ) + (α, g) ∈ 	(L), is a 1-cocycle of the Lie
algebroid (L, [, ]L, ρL). Anyway, since E1(M)-Dirac structures are closely related with Jacobi
structures, the presence of a Lie algebroid and a 1-cocycle in the theory is not very surprising
(see [11, 15–17]).

Several aspects related to the geometry of E1(M)-Dirac structures were investigated by
Wade in [35]. However, the nature of the induced structure on the leaves of the characteristic
foliation of a E1(M)-Dirac structure L was not discussed in [35]. So, the aim of our paper
is to describe such a nature. In addition, we will show that one may obtain, from L, a Dirac
structure L̃ on M × R in the sense of Courant–Weinstein and we will discuss the relation
between the induced structures on the leaves of the characteristic foliations of L and L̃. For the
above purposes, we will prove some general results about the relation between the 1-cocycles
of an arbitrary Lie algebroid A over M and the leaves of the Lie algebroid foliation on M
associated with A. In our opinion, these last results could be of independent interest.

The paper is organized as follows. In section 2, we recall several definitions and results
about E1(M)-Dirac structures which will be used in the following. We also present some
examples that were obtained in [35]. In section 3, we prove that if (A, [[,]], ρ) is a Lie algebroid
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over M, φ is a 1-cocycle of A and F is a leaf of the Lie algebroid foliationFA on M then S
φ

F = ∅
or S

φ

F = F , where S
φ

F is the subset of F defined by S
φ

F = {x ∈ F/ker (ρ|Ax
) ⊆ 〈φ(x)〉◦} (see

theorem 3.2). Here, Ax is the fibre of A over x and 〈φ(x)〉◦ is the annihilator of the subspace of
A∗

x generated by φ(x). On the other hand, the Lie algebroid structure ([[,]], ρ) and the 1-cocycle
φ induce a Lie algebroid structure ([[,]]−φ, ρ̄φ) on the vector bundle Ā = A×R → M ×R (see
(3.1)). Then, if F and F̄ are the leaves of the Lie algebroid foliationsFA andFĀ passing through
x0 ∈ M and (x0, t0) ∈ M × R, we obtain, in the two possible cases

(
S

φ

F = ∅ or S
φ

F = F
)
, the

relation between F and F̄ (see theorem 3.3). Now, assume that L is a E1(M)-Dirac structure
and that F is a leaf of the characteristic foliation FL. Then, in section 4, we prove that L
induces, in a natural way, a E1(F )-Dirac structure LF and, moreover (using the results of
section 3), we describe the nature of LF . In fact, we obtain that in the case when S

φL

F = ∅, LF

comes from a precontact structure on F and in the case when S
φL

F = F, LF comes from a
lcp structure on F (see theorem 4.2). Using this theorem, we directly deduce the results of
Courant [2] about the leaves of the characteristic foliation of a Dirac structure and the results
of Kirillov [19] and Guedira–Lichnerowicz [13] about the leaves of the characteristic foliation
of a Jacobi structure. We also apply the theorem to the particular case when L comes from
a homogeneous Poisson structure and some interesting consequences are derived. Finally, in
section 5, we prove that a Dirac structure L̃ on M × R can be obtained from a E1(M)-Dirac
structure L in such a way that the Lie algebroid associated with L̃ is isomorphic to the Lie
algebroid over M × R,

(
L̄ = L × R, [,]−φL

L , ρ̄
φL

L

)
. Thus, if (x0, t0) is a point of M × R, one

may consider the leaves F and F̃ of the characteristic foliations of L and L̃ passing through x0

and (x0, t0). Then, using the results of section 3, we obtain the relation between F and F̃ and,
in addition, we describe the presymplectic 2-form on F̃ in terms of the precontact structure
on F, when S

φL

F = ∅, or in terms of the lcp structure on F, when S
φL

F = F (see theorem 5.3).
As an application, we directly deduce some results of Guedira–Lichnerowicz [13] about the
relation between the leaves of the characteristic foliation of a Jacobi structure on M and the
leaves of the symplectic foliation of the Poisson structure on M × R induced by the Jacobi
structure.

2. E1(M )-Dirac structures

All the manifolds considered in this paper are assumed to be connected and of the class
C∞. Moreover, if M is a differentiable manifold, we will denote by E1(M) the vector bundle
(T M × R) ⊕ (T ∗M × R) → M . Note that the space of global sections 	(E1(M)) of E1(M)

can be identified with the direct sum (X(M) × C∞(M, R)) ⊕ (1(M) × C∞(M, R)).

2.1. Definition and characterization of E1(M)-Dirac structures

In this section, we will recall the definition of a E1(M)-Dirac structure, which was introduced
by Wade in [35]. We will also give several results related to this notion.

The natural symmetric and skew-symmetric pairings 〈,〉+ and 〈,〉− on V ⊕ V ∗, V being
a real vector space of finite dimension, can be extended, in a natural way, to the Whitney
sum A ⊕ A∗, where A → M is a real vector bundle over a manifold M. We also denote
by 〈,〉+ and 〈,〉− the resultant pairings on 	(A ⊕ A∗) ∼= 	(A) ⊕ 	(A∗). In the particular
case when A = T M × R, the explicit expressions of 〈,〉+ and 〈,〉− on 	(E1(M)) are

〈(X1, f1) + (α1, g1), (X2, f2) + (α2, g2)〉+ = 1
2

(
iX2α1 + f2g1 + iX1α2 + f1g2

)
(2.1)

〈(X1, f1) + (α1, g1), (X2, f2) + (α2, g2)〉− = 1
2

(
iX2α1 + f2g1 − iX1α2 − f1g2

)
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for (Xi, fi ) + (αi, gi) ∈ 	(E1(M)), i ∈ {1, 2}. One may also consider the homomorphism of
C∞(M, R)-modules ρ : 	(E1(M)) → X(M) defined by

ρ((X, f ) + (α, g)) = X. (2.2)

On the other hand, in [35] Wade introduced a suitable R-bilinear bracket [,] : 	(E1(M)) ×
	(E1(M)) → 	(E1(M)) on the space 	(E1(M)). This approach is based on an idea that can
be found in [6], where the author generalizes the Courant bracket on 	(T M ⊕ T ∗M) to the
case of complexes over Lie algebras. The bracket [,] is given by

[(X1, f1) + (α1, g1), (X2, f2) + (α2, g2)] = ([X1, X2], X1(f2) − X2(f1))

+
(LX1α2 − LX2α1 + 1

2 d
(
iX2α1 − iX1α2

)
+ f1α2 − f2α1

(2.3)
+ 1

2 (g2 df1 − g1 df2 − f1 dg2 + f2 dg1) ,

X1(g2) − X2(g1) + 1
2

(
iX2α1 − iX1α2 − f2g1 + f1g2

))
for (Xi, fi )+(αi, gi) ∈ 	(E1(M)), i ∈ {1, 2}, where [,] is the usual Lie bracket of vector fields
and L is the Lie derivative operator on M. This bracket is skew-symmetric and, moreover, we
have that

[e1, f e2] = f [e1, e2] + ρ(e1)(f )e2 − 〈e1, e2〉+((0, 0) + (df, 0)) (2.4)

for e1, e2 ∈ 	(E1(M)) and f ∈ C∞(M, R). We note that [,] is not, in general, a Lie bracket,
since the Jacobi identity does not hold (see [35]).

Now, let L be a vector sub-bundle of E1(M) which is isotropic under the symmetric pairing
〈,〉+. We may consider the map TL : 	(L) × 	(L) × 	(L) → C∞(M, R) given by

TL(e1, e2, e3) = 〈[e1, e2], e3〉+ for e1, e2, e3 ∈ 	(L). (2.5)

If ei = (Xi, fi ) + (αi, gi ) with i ∈ {1, 2, 3} then, using (2.1), (2.3), (2.5) and the fact that
〈ei, ej 〉+ = 0, for i, j ∈ {1, 2, 3}, we deduce that

TL(e1, e2, e3) = 1

2

∑
Cycl.(e1,e2,e3)

(
i[X1,X2]α3 + g3(X1(f2) − X2(f1)) + X3

(
iX2α1 + f2g1

)
(2.6)

+ f3
(
iX2α1 + f2g1

) )
.

Thus, from (2.4), (2.5) and (2.6), it follows that TL is a skew-symmetric C∞(M, R)-trilinear
map, that is, TL ∈ 	(∧3L∗). Furthermore, using proposition 3.3 in [35], we obtain that

[[e1, e2], e3] + [[e2, e3], e1] + [[e3, e1], e2] = (0, 0) + (dTL(e1, e2, e3), TL(e1, e2, e3)) (2.7)

for e1, e2, e3 ∈ 	(L).

Definition 2.1 [35]. A E1(M)-Dirac structure on M is a sub-bundle L of E1(M) which is
maximally isotropic under the symmetric pairing 〈,〉+ and such that 	(L) is closed under [,].

It is clear that if L is a E1(M)-Dirac structure on M then the section TL ∈ 	(∧3L∗) vanishes.
In fact, we have the following result.

Proposition 2.2 [35]. Let L be a sub-bundle of E1(M) which is maximally isotropic under
the symmetric pairing 〈,〉+. Then, L is a E1(M)-Dirac structure if and only if the section
TL ∈ 	(∧3L∗) given by (2.5) vanishes.

From (2.7) and proposition 2.2, we conclude that the restriction of [,] to 	(L) satisfies the
Jacobi identity.
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2.2. Lie algebroids and the characteristic foliation of a E1(M)-Dirac structure

A Lie algebroid A over a manifold M is a vector bundle A over M together with a Lie algebra
structure [[,]] on the space 	(A) and a bundle map ρ : A → T M , called the anchor map,
such that if we also denote by ρ : 	(A) → X(M) the homomorphism of C∞(M, R)-modules
induced by the anchor map then

(i) ρ : (	(A), [[,]]) → (X(M), [,]) is a Lie algebra homomorphism and

(ii) for all f ∈ C∞(M, R) and for all X, Y ∈ 	(A), one has

[[X, f Y ]] = f [[X, Y ]] + (ρ(X)(f ))Y.

The triple (A, [[,]], ρ) is called a Lie algebroid over M (see [25]).
Let (A, [[,]], ρ) be a Lie algebroid over M. We consider the generalized distribution FA

on M whose characteristic space at a point x ∈ M is given by

FA(x) = ρ(Ax) (2.8)

where Ax is the fibre of A over x. The distribution FA is finitely generated and involutive.
Thus, FA defines a generalized foliation on M in the sense of Sussman [31]. FA is the Lie
algebroid foliation on M associated with A.

Remark 2.3. If F is the leaf of FA passing through x ∈ M , dim F = r and y ∈ M then y ∈ F

if and only if there exists a continuous piecewise smooth path γ : I → M from x to y, which
is tangent to FA and such that dimFA(γ (t)) = r , for all t ∈ I (see [20, 33]).

If (A, [[,]], ρ) is a Lie algebroid over M, one can introduce the Lie algebroid cohomology
complex with trivial coefficients (see [25]). The space of 1-cochains is 	(A∗), where A∗ is the
dual bundle to A, and a 1-cochain φ ∈ 	(A∗) is a 1-cocycle if and only if

φ[[X, Y ]] = ρ(X)(φ(Y )) − ρ(Y )(φ(X)) for all X, Y ∈ 	(A). (2.9)

Now, suppose that M is a differentiable manifold, that [,] is the bracket on 	(E1(M)) given by
(2.3) and that ρ : 	(E1(M)) → X(M) is the homomorphism of C∞(M, R)-modules defined
by (2.2). Also assume that L is a E1(M)-Dirac structure and that ρL (respectively, [,]L) is the
restriction of ρ (respectively, [,]) to 	(L) (respectively, 	(L) × 	(L)). Then, it is clear that
the triple (L, [,]L, ρL) is a Lie algebroid over M (see [35] and section 2.1). Thus, one can
consider the Lie algebroid foliation FL on M associated with L. FL is called the characteristic
foliation of the E1(M)-Dirac structure.

On the other hand, we may introduce a section φL of the dual bundle L∗ as follows:

φL(e) = f for e = (X, f ) + (α, g) ∈ 	(L). (2.10)

A direct computation, using (2.2), (2.3) and (2.10), proves that φL is a 1-cocycle.

2.3. Examples of E1(M)-Dirac structures

Next, we will present some examples of E1(M)-Dirac structures which were obtained in [35].
In addition, we will describe the Lie algebroids, the characteristic foliations and the 1-cocycles
associated with these structures.
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2.3.1. Dirac structures. Let L̃ be a vector sub-bundle of T M ⊕T ∗M and consider the vector
sub-bundle L of E1(M) whose sections are

	(L) = {(X, 0) + (α, f )/X + α ∈ 	(L̃), f ∈ C∞(M, R)}. (2.11)

Then, L̃ is a Dirac structure on M in the sense of Courant–Weinstein [2, 3] if and only if L is
a E1(M)-Dirac structure (see [35]). We recall that a vector sub-bundle L̃ of T M ⊕ T ∗M is a
Dirac structure on M if L̃ is maximally isotropic under the natural symmetric pairing 〈,〉+ on
T M ⊕ T ∗M and, in addition, the space of sections of L̃, 	(L̃), is closed under the Courant
bracket [,]∼ which is defined by

[X1 + α1, X2 + α2]∼ = [X1, X2] +
(LX1α2 − LX2 α1 + 1

2 d
(
iX2α1 − iX1α2

))
(2.12)

for X1 + α1, X2 + α2 ∈ X(M) ⊕ 1(M) ∼= 	(T M ⊕ T ∗M).
If L̃ ⊆ T M ⊕ T ∗M is a Dirac structure on M then the triple (L̃, [,]∼

L̃
, ρ̃L̃) is a Lie

algebroid over M, where [,]∼
L̃

is the restriction to 	(L̃) × 	(L̃) of the Courant bracket
given by (2.12) and ρ̃L̃ is the restriction to 	(L̃) of the map ρ̃ : 	(T M ⊕ T ∗M) → X(M)

defined by

ρ̃(X + α) = X (2.13)

for all X + α ∈ 	(T M ⊕ T ∗M) (see [2]). The characteristic foliation associated with L̃ is the
Lie algebroid foliation FL̃. It is clear that FL̃(x) = FL(x), for all x ∈ M . In addition, from
(2.10) and (2.11), it follows that the 1-cocycle φL identically vanishes.

2.3.2. Locally conformal presymplectic structures. A locally conformal presymplectic (lcp)
structure on a manifold M is a pair (, ω), where  is a 2-form on M, ω is a closed 1-form
and d = ω ∧ . If (, ω) is a lcp structure on M, one may define the vector sub-bundle
L(,ω) of E1(M) whose sections are

	
(
L(,ω)

) = {
(X, −iXω) + (iX + f ω, f )/(X, f ) ∈ X(M) × C∞(M, R)

}
. (2.14)

It is clear that the vector bundles L(,ω) and T M × R are isomorphic. In addition, L(,ω)

is a E1(M)-Dirac structure [35]. Note that if ω = 0 then  is a presymplectic form on M.
Furthermore, if (, ω) is a lcp structure on a manifold M of even dimension and  is a
nondegenerate 2-form then (, ω) is a locally conformal symplectic structure (see [13, 19,
32]).

Let (, ω) be a lcp structure on a manifold M and L(,ω) be the associated E1(M)-
Dirac structure. Then, using (2.2), (2.3) and (2.14), we deduce that the Lie algebroids(
L(,ω), [,]L(,ω)

, ρL(,ω)

)
and

(
T M × R, [[,]](,ω), ρ(,ω)

)
are isomorphic, where [[,]](,ω) and

ρ(,ω) are given by

[[(X, f ), (Y, g)]](,ω) = ([X, Y ], (X, Y ) + (X(g) − gω(X)) − (Y (f ) − f ω(Y )))

ρ(,ω)(X, f ) = X

for (X, f ), (Y, g) ∈ X(M)×C∞(M, R). We remark that the map ∇ : X(M)×C∞(M, R) →
C∞(M, R) defined by ∇Xf = X(f )−f ω(X), for X ∈ X(M) and f ∈ C∞(M, R), induces a
representation of the Lie algebroid (T M , [,], Id) on the trivial vector bundle M ×R → M and
that  is a 2-cocycle of (T M , [,], Id) with respect to this representation. In addition, the Lie
algebroid

(
T M × R, [[,]](,ω), ρ(,ω)

)
is the extension of (T M , [,], Id) via ∇ and  (for the

definition of the extension of a Lie algebroid A with respect to a 2-cocycle and a representation
of A on a vector bundle, see [25]). On the other hand, it is clear that FL(,ω)

(x) = TxM , for all
x ∈ M , and that, under the isomorphism between L(,ω) and T M × R, the 1-cocycle φL(,ω)

is the pair (−ω, 0) ∈ 1(M) × C∞(M, R) ∼= 	(T ∗M × R) (see (2.10) and (2.14)).
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2.3.3. Precontact structures. A precontact structure on a manifold M is a 1-form η on M.
A precontact structure η on M induces a E1(M)-Dirac structure Lη. More precisely, suppose
that & is a 2-form on M, that η is a 1-form and consider the vector sub-bundle L of E1(M)

whose sections are

	(L) = {
(X, f ) + (iX& + f η, −iXη)/(X, f ) ∈ X(M) × C∞(M, R)

}
. (2.15)

The vector bundles L and T M × R are isomorphic. Moreover, L is a E1(M)-Dirac structure
if and only if & = dη (see [35]). Thus,

	(Lη) = {
(X, f ) + (iX dη + f η, −iXη)/(X, f ) ∈ X(M) × C∞(M, R)

}
. (2.16)

Note that a precontact structure η on a manifold M of odd dimension 2n+ 1 such that η∧ (dη)n

is a volume form is a contact structure (see [13, 19, 20, 22]).
Let η be a precontact structure on a manifold M and Lη be the associated E1(M)-Dirac

structure. Then, the Lie algebroids
(
Lη, [,]Lη

, ρLη

)
and (T M × R, [,], π) are isomorphic,

where π : T M × R → T M is the canonical projection over the first factor and [,] is the usual
Lie bracket on 	(T M × R) ∼= X(M) × C∞(M, R) given by

[(X, f ), (Y, g)] = ([X, Y ], X(g) − Y (f ))

for (X, f ), (Y, g) ∈ X(M) × C∞(M, R). We also have that FLη
(x) = TxM , for all x ∈ M .

Moreover, under the isomorphism between Lη and T M × R, the 1-cocycle φLη
is the pair

(0, 1) ∈ 1(M) × C∞(M, R) ∼= 	(T ∗M × R) (see (2.10) and (2.16)).

2.3.4. Jacobi structures. A Jacobi structure on a manifold M is a pair (), E), where )

is a 2-vector and E is a vector field, such that [), )] = 2E ∧ ) and [E, )] = 0, [,] being
the Schouten–Nijenhuis bracket. If the vector field E identically vanishes then (M, )) is a
Poisson manifold. Jacobi and Poisson manifolds were introduced by Lichnerowicz [21, 22]
(see also [1, 4, 13, 19, 20, 33, 36]).

Now, given a 2-vector ) and a vector field E on a manifold M, we can consider the vector
sub-bundle L(),E) of E1(M) whose sections are

	
(
L(),E)

) = {
(#)(α) + f E, −iEα) + (α, f )/(α, f ) ∈ 1(M) × C∞(M, R)

}
(2.17)

where #) : 1(M) → X(M) is the homomorphism of C∞(M, R)-modules defined by
β(#)(α)) = )(α, β), for α, β ∈ 1(M). Note that the vector bundles L(),E) and T ∗M × R

are isomorphic. Moreover, we have that L(),E) is a E1(M)-Dirac structure if and only if
(), E) is a Jacobi structure (see [35]).

If (), E) is a Jacobi structure on a manifold M and L(),E) is the associated E1(M)-Dirac
structure then the Lie algebroids

(
L(),E), [,]L(),E)

, ρL(),E)

)
and

(
T ∗M × R, [[,]](),E), #̃(),E)

)
are isomorphic, where [[,]](),E) and #̃(),E) are defined by

[[(α, f ), (β, g)]](),E) = (L#)(α)β − L#)(β)α − d()(α, β)) + fLEβ − gLEα

− iE(α ∧ β), )(β, α) + #)(α)(g) − #)(β)(f ) + f E(g) − gE(f )
)

#̃(),E)(α, f ) = #)(α) + f E

for (α, f ), (β, g) ∈ 1(M) × C∞(M, R) ∼= 	(T ∗M × R) (see [35]). The Lie algebroid
structure

(
[[,]](),E), #̃(),E)

)
on T ∗M × R was introduced in [18]. Recently, Grabowski and

Marmo [11] defined the Poisson lift of the structure (), E) and they proved that this lift
defines, in a natural way, the Lie bracket [[,]](),E). The characteristic foliation of L(),E) is
the characteristic foliation on M associated with the Jacobi structure (), E) (see [4, 13, 19])
and, under the isomorphism between L(),E) and T ∗M × R, the 1-cocycle φL(),E)

is the pair
(−E, 0) ∈ X(M) × C∞(M, R) ∼= 	(T M × R) (see (2.10) and (2.17)).
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2.3.5. Homogeneous Poisson structures. A homogeneous Poisson manifold (M, 
, Z) is a
Poisson manifold (M, 
) with a vector field Z such that [Z, 
] = −
 (see [4]). Given a
2-vector 
 and a vector field Z on a manifold M, we can define the vector sub-bundle L(
,Z)

of E1(M) whose sections are

	
(
L(
,Z)

) = {
(#
(α) − f Z, f ) + (α, iZα)/(α, f ) ∈ 1(M) × C∞(M, R)

}
. (2.18)

The vector bundles L(
,Z) and T ∗M × R are isomorphic. Furthermore, (M, 
, Z) is a
homogeneous Poisson manifold if and only if L(
,Z) is a E1(M)-Dirac structure (see [35]).

Let (M, 
, Z) be a homogeneous Poisson manifold and L(
,Z) be the associated E1(M)-
Dirac structure. Then, from (2.2), (2.3) and (2.18), it follows that the Lie algebroids(
L(
,Z), [,]L(
,Z)

, ρL(
,Z)

)
and

(
T ∗M × R, [[,]](
,Z), #̃(
,Z)

)
are isomorphic, where [[,]](
,Z)

and #̃(
,Z) are defined by

[[(α, f ), (β, g)]](
,Z) = (L#
(α)β − L#
(β)α − d(
(α, β)) − f (LZβ − β) + g(LZα − α),

#
(α)(g) − #
(β)(f ) + gZ(f ) − f Z(g)
)

(2.19)

#̃(
,Z)(α, f ) = #
(α) − f Z

for (α, f ), (β, g) ∈ 1(M) × C∞(M, R) ∼= 	(T ∗M × R). Furthermore, it is clear that
FL(
,Z)

(x) = #
(T ∗
x M) + 〈Z(x)〉, for all x ∈ M . In other words, if F
 is the symplectic

foliation of the Poisson manifold (M, 
) then

FL(
,Z)
(x) = F
(x) + 〈Z(x)〉 for all x ∈ M. (2.20)

In addition, under the isomorphism between L(
,Z) and T ∗M × R, the 1-cocycle φL(
,Z)
is the

pair (0, 1) ∈ X(M) × C∞(M, R) ∼= 	(T M × R) (see (2.10) and (2.18)).
On the other hand, we may consider the Lie algebroid structure ([[,]]
, #
) on the vector

bundle T ∗M → M induced by the Poisson structure 
 and the Lie algebroid structure
([[,]]Z, ρZ) on the vector bundle M × R → M induced by the vector field Z. The explicit
definitions of [[,]]
, [[,]]Z and ρZ are

[[α, β]]
 = L#
(α)β − L#
(β)α − d(
(α, β))

[[f, g]]Z = gZ(f ) − f Z(g) ρZ(f ) = −f Z

for α, β ∈ 1(M) and f, g ∈ C∞(M, R). Then, using (2.19), we conclude that (T ∗M,

[[,]]
, #
) and (M ×R, [[,]]Z, ρZ) are Lie subalgebroids of
(
T ∗M ×R, [[,]](
,Z), #̃(
,Z)

)
. This

implies that (T ∗M, [[,]]
, #
) and (M × R, [[,]]Z, ρZ) form a matched pair of Lie algebroids
in the sense of Mokri [27].

In section 4, we will prove that if F is a leaf of the characteristic foliation of a E1(M)-Dirac
structure L then L induces a E1(F )-Dirac structure LF and, in addition, we will describe the
nature of LF . First, in the next section, we will show two general results about the relation
between the 1-cocycles of an arbitrary Lie algebroid A and the leaves of the Lie algebroid
foliation FA.

3. 1-cocycles of a Lie algebroid and the leaves of the Lie algebroid foliation

Let (A, [[,]], ρ) be a Lie algebroid over M, φ ∈ 	(A∗) be a 1-cocycle and π1 : M × R → M

be the canonical projection onto the first factor. We consider the map · : 	(A) × C∞(M×
R, R) → C∞(M × R, R) given by

X · f̄ = ρ(X)(f̄ ) + φ(X)
∂f̄

∂t
.

It is easy to prove that · is an action of A on M × R in the sense of [14] (see definition 2.3
in [14]). Thus, if π∗

1 A is the pull-back of A over π1 then the vector bundle π∗
1 A → M × R
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admits a Lie algebroid structure ([[,]]−φ, ρ̄φ) (see theorem 2.4 in [14]). For the sake of
simplicity, when the 1-cocycle φ is zero, we will denote by ([[,]]−, ρ̄) the resultant Lie
algebroid structure on π∗

1 A → M × R. On the other hand, it is clear that the vector bundles
π∗

1 A → M ×R and Ā = A×R → M ×R are isomorphic and that the space of sections 	(Ā)

of Ā → M×R can be identified with the set of time-dependent sections of A → M . Under this
identification, we have that [[X̄, Ȳ ]]− (x, t) = [[X̄t , Ȳ t ]](x) and that ρ̄(X̄)(x, t) = ρ(X̄t )(x),
for X̄, Ȳ ∈ 	(Ā) and (x, t) ∈ M × R (see [14]). In addition,

[[X̄, Ȳ ]]−φ = [[X̄, Ȳ ]]− + φ(X̄)
∂Ȳ

∂t
− φ(Ȳ )

∂X̄

∂t
ρ̄φ(X̄) = ρ̄(X̄) + φ(X̄)

∂

∂t
(3.1)

where ∂X̄
∂t

∈ 	(Ā) denotes the derivative of X̄ with respect to the time.
Now, if FĀ is the Lie algebroid foliation of (Ā, [[,]]−φ, ρ̄φ) then, from (3.1), it follows that

FĀ(x, t) =
{

ρ(ex) + φ(x)(ex)
∂

∂t |t
∈ T(x,t)(M × R)/ex ∈ Ax

}
(3.2)

for all (x, t) ∈ M × R. Moreover, a direct computation shows that

dimFA(x) � dimFĀ(x, t) � dimFA(x) + 1 (3.3)

dimFĀ(x, t) = dimFA(x) ⇐⇒ ker (ρ|Ax
) ⊆ 〈φ(x)〉◦ (3.4)

where FA is the Lie algebroid foliation of A and 〈φ(x)〉◦ is the annihilator of the subspace of
A∗

x generated by φ(x), that is,

〈φ(x)〉◦ = {ex ∈ Ax/φ(x)(ex) = 0}.

Remark 3.1. Note that the vector field ∂
∂t

on M × R is an infinitesimal automorphism of
the foliation FĀ. Therefore, if (x, t0) and (x, t ′

0) are points of M × R and F̄ , F̄ ′ are the
leaves of FĀ passing through (x, t0) and (x, t ′

0), then the map (y, s) �→ (y, s + (t ′
0 − t0)) is a

diffeomorphism from F̄ to F̄ ′.

Next, we will discuss some relations between the leaves ofFA and the 1-cocycle φ and between
the leaves of FA and FĀ. More precisely, the aim of this section is to prove the following two
results.

Theorem 3.2. Let (A, [[,]], ρ) be a Lie algebroid and φ ∈ 	(A∗) be a 1-cocycle. If F is a leaf
of the Lie algebroid foliation FA and S

φ

F is the subset of F defined by

S
φ

F = {x ∈ F/ker (ρ|Ax
) ⊆ 〈φ(x)〉◦},

then S
φ

F = ∅ or S
φ

F = F . Furthermore, in the second case
(
S

φ

F = F
)
, the 1-cocycle φ induces

a closed 1-form ωF on F which is characterized by the condition

ωF (ρ(e)|F ) = −φ(e)|F for all e ∈ 	(A). (3.5)

Theorem 3.3. Let (A, [[,]], ρ) be a Lie algebroid, φ ∈ 	(A∗) be a 1-cocycle and consider on
the vector bundle Ā = A × R → M × R the Lie algebroid structure ([[,]]−φ, ρ̄φ) given by
(3.1). Suppose that (x0, t0) ∈ M × R and that F and F̄ are the leaves of the Lie algebroid
foliations FA and FĀ passing through x0 ∈ M and (x0, t0) ∈ M × R, respectively. Then

(i) if ker
(
ρ|Ax0

) �⊆ 〈φ(x0)〉◦ (or, equivalently, S
φ

F = ∅) we have that F̄ = F × R.
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(ii) if ker
(
ρ|Ax0

) ⊆ 〈φ(x0)〉◦ (or, equivalently, S
φ

F = F ) and π1 : M × R → M is the
canonical projection onto the first factor, we have that π1(F̄ ) = F and that the map
π1|F̄ : F̄ → F is a covering map. In addition, if ωF is the closed 1-form on F characterized
by condition (3.5) and iF̄ : F̄ → M ×R is the canonical inclusion then F̄ is diffeomorphic
to a Galois covering of F associated with ωF and

(π1|F̄ )∗(ωF ) = −d((iF̄ )∗(t)).

Proof of theorem 3.2. Let π : A → M be the canonical projection and denote by AF the
vector bundle over F defined by AF = π−1(F ). Using that F is a leaf of the Lie algebroid
foliation on M associated with A, we obtain that the Lie algebroid structure on A induces a
Lie algebroid structure ([[,]]F , ρF ) on the vector bundle πF : AF → F and, in addition, the
anchor map ρF : AF → T F is an epimorphism of vector bundles. Thus, (AF , [[,]]F , ρF ) is
a transitive Lie algebroid. Denote by KF = Ker (ρF ) the adjoint bundle of AF which is a
bundle of Lie algebras over F (see [25], p 105).

Now, we consider the adjoint representation adF of AF defined by

adF
e s = [[e, s]] (3.6)

for all e ∈ 	(AF ) and s ∈ 	(KF ) (see [25], p 107).
The flat AF -connection adF on KF induces, in a natural way, an AF -connection on the

dual bundle K∗
F to KF , which we also denote by adF , and the restriction of the 1-cocycle φ to

KF defines a section φKF of K∗
F . Furthermore, from (2.9) and (3.6), it follows that(

adF
e φKF

)
(s) = 0

for all e ∈ 	(AF ) and s ∈ 	(KF ), that is, φKF is parallel with respect to adF .
Next, assume that S

φ

F �= ∅ and let x be a point of S
φ

F . This means that φKF (x) = 0. We
must prove that F = S

φ

F or, equivalently, that if y ∈ F and sy ∈ KF (y) = Ker (ρF (y)),

φKF (y)(sy) = 0.

For this purpose, we consider a continuous piecewise smooth path γ : [0, 1] → F from y to
x. Then, using the results in [7], we deduce the following facts:

(i) There exists an AF -path α : [0, 1] → AF with base path γ , i.e.

ρF ◦ α = γ̇ . (3.7)

(ii) There exists a linear isomorphism τ x
y : KF (y) → KF (x), the parallel displacement of

the fibres along the AF -path α, which maps sy on a point sx of KF (x). In fact, if
γ̃ : [0, 1] → KF is the unique horizontal lift of α (with respect to adF ) starting at sy then
τ x

y (sy) = sx = γ̃ (1).

Now, choose a section e of AF and a section s of KF satisfying the following conditions

e ◦ γ = α s ◦ γ = γ̃ .

Then, (3.7) and the relations

0 = (
adF

e s
) ◦ γ 0 = (

adF
e φKF

)
(s) ◦ γ

imply that the derivative of the map φKF ◦ γ̃ : [0, 1] → KF → R is zero and thus

φKF (y)(sy) = φKF (γ (0))(γ̃ (0)) = φKF (γ (1))(γ̃ (1)) = φKF (x)(sx) = 0.

Finally, if S
φ

F = F we may introduce a 1-form ωF on F given by

ωF (x)(ρ(ex)) = −φ(x)(ex)
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for all x ∈ F and ex ∈ Ax . Note that the condition

ker (ρ|Ax
) ⊆ 〈φ(x)〉◦ for all x ∈ F

implies that ωF (x) : TxF → R is well defined. Moreover, it is clear that ωF satisfies (3.5)
and, since φ is a 1-cocycle, we deduce that ωF is closed. �

In order to prove theorem 3.3, we will use the following lemma.

Lemma 3.4. If F̄ is a leaf of the Lie algebroid foliation FĀ and S
φ

F̄
is the subset of F̄ defined by

S
φ

F̄
= {

(x, t) ∈ F̄/ker
(
ρ|Ax

) ⊆ 〈φ(x)〉◦}
then S

φ

F̄
= ∅ or S

φ

F̄
= F̄ .

Proof. Assume that the dimension of F̄ is r. Then, we will proceed in two stages. In the first
stage, we will show that S

φ

F̄
is an open subset of F̄ . In the second stage, we will prove that S

φ

F̄

is a closed subset of F̄ . Thus, using the fact that F̄ is connected, we will deduce that S
φ

F̄
= ∅

or S
φ

F̄
= F̄ .

First stage. Let (x0, t0) be a point of S
φ

F̄
. We will show that there exists an open subset W̄(x0,t0)

of F̄ such that (x0, t0) ∈ W̄(x0,t0) and W̄(x0,t0) ⊆ S
φ

F̄
or, equivalently (see (3.4)),

dimFA(x) = dimFĀ(x, t) = r for all (x, t) ∈ W̄(x0,t0). (3.8)

Note that

dimFĀ(x, t) = r for all (x, t) ∈ F̄ . (3.9)

Therefore, we can choose a global generator system {e1, . . . , em} of 	(A) in such a way
that the set of vectors

{
ρ(ei(x0)) + φ(x0)(ei(x0)) ∂

∂t |t0
}

1�i�r
is a basis of the vector space

FĀ(x0, t0). Then, using that (x0, t0) ∈ S
φ

F̄
, we deduce that the vectors {ρ(ei(x0))}1�i�r are

linearly independent in Tx0M . This implies that dimFA(x0) � r and, since the rank of a
differentiable generalized distribution is a lower semicontinuous function (see [33]), there
exists an open subset V ′

x0
of M, x0 ∈ V ′

x0
, such that

dimFA(x) � dimFA(x0) � r for all x ∈ V ′
x0

. (3.10)

Thus, if W̄(x0,t0) is the open subset of F̄ defined by W̄(x0,t0) = F̄ ∩ (
V ′

x0
× R

)
then, from (3.3),

(3.9) and (3.10), it follows that (3.8) holds.
Second stage. We will prove that F̄ − S

φ

F̄
is an open subset of F̄ .

Let (x0, t0) be a point of F̄ − S
φ

F̄
and suppose that F is the leaf of FA passing through x0.

We have that x0 ∈ F − S
φ

F . Thus, using theorem 3.2, we deduce that

S
φ

F = ∅. (3.11)

Therefore, from (3.2) and (3.11), it follows that

FĀ(x, t) = FA(x) ⊕
〈

∂

∂t |t

〉
for all (x, t) ∈ F × R.

Consequently, F × R is a connected integral submanifold of FĀ and its dimension is r.
This implies that F × R is an open subset of F̄ . Finally, from (3.11), we conclude that
F × R ⊆ F̄ − S

φ

F̄
. �

Proof of theorem 3.3. (i) If ker
(
ρ|Ax0

) �⊆ 〈φ(x0)〉◦ then (x0, t0) ∈ F̄ − S
φ

F̄
and thus, using

lemma 3.4, we obtain that

S
φ

F̄
= ∅. (3.12)
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Now, proceeding as in the second stage of the proof of lemma 3.4, we deduce that F × R is
an open subset of F̄ . On the other hand, from (3.3), (3.4) and (3.12), it follows that

dimFA(x) = dimFĀ(x, t) − 1 = dim F̄ − 1 for all (x, t) ∈ F̄ .

Using this fact, (3.2) and remark 2.3, we have that π1(F̄ ) ⊆ F . Therefore, we have proved
that F̄ = F × R.
(ii) Assume that ker

(
ρ|Ax0

) ⊆ 〈φ(x0)〉◦. Then, (x0, t0) ∈ S
φ

F̄
which implies that F̄ = S

φ

F̄
,

that is,

dimFA(x) = dimFĀ(x, t) = dimF̄ for all (x, t) ∈ F̄ . (3.13)

Using (3.2), (3.13) and remark 2.3, we obtain that π1(F̄ ) ⊆ F and that π1|F̄ : F̄ → F is a
local diffeomorphism. Consequently, π1(F̄ ) is an open subset of F.

In addition, from (3.2) and (3.5), it follows that

(π1|F̄ )∗(ωF ) = −d((iF̄ )∗t). (3.14)

Next, we will show that π1(F̄ ) is a closed subset of F and that π1|F̄ : F̄ → F is a covering
map.

Let x be a point of F. Since ωF is a closed 1-form, there exists a connected open subset
U in F and a real C∞-differentiable function fF on U such that x ∈ U and

ωF = dfF on U. (3.15)

Then, using (3.2), (3.5), (3.15), remark 2.3 and the fact that π1(F̄ ) ⊆ F , we deduce the
following result

(y, s) ∈ (π1|F̄ )−1(U) = π−1
1 (U) ∩ F̄ ⇒ {(z, s + fF (y) − fF (z)) ∈ M × R/z ∈ U} ⊆ F̄ .

(3.16)

Thus, if x ∈ F − π1(F̄ ), we have that U ⊆ F − π1(F̄ ). This proves that π1(F̄ ) is a closed
subset of F which implies that π1(F̄ ) = F .

Now, suppose that (x, t) is a point of F̄ and let U be a connected open subset of F and
fF be a real C∞-differentiable function on F such that x ∈ U and (3.15) holds. If C(y,s) is the
connected component of a point (y, s) ∈ (π1|F̄ )−1(U) then, using (3.14) and (3.15), it follows
that the function (π1|F̄ )∗(fF ) + (iF̄ )∗t is constant on C(y,s). Therefore, from (3.16), we obtain
that

C(y,s) = {(z, s + fF (y) − fF (z)) ∈ M × R/z ∈ U}.
Consequently, the map π1|C(y,s)

: C(y,s) → U is a diffeomorphism. This proves that π1|F̄ :
F̄ → F is a covering map.

Finally, let E be the covering of F associated with ωF , that is, E is the sheaf of germs of
C∞ functions gF on F such that dgF = ωF (see section 2 of chapter 14 in [8]). Denote by(
f 0

F

)
[x0] the germ of f 0

F at x0, where f 0
F is a C∞ function on a connected open subset U0 of F

such that x0 ∈ U0,
(
f 0

F

)
(x0) = t0 and ωF |U0 = df 0

F . Then, using the above description of the
leaf F̄ and the results in [8], we deduce that F̄ is diffeomorphic to the connected component
of

(
f 0

F

)
[x0] in E. In other words, F̄ is diffeomorphic to a Galois covering of F associated with ωF .

�

4. E1(M )-Dirac structures, submanifolds of the base space and the leaves of the
characteristic foliation

4.1. E1(M)-Dirac structures and submanifolds of the base space

In this section, we will prove that if S is a submanifold of M then, under certain regularity
conditions, a E1(M)-Dirac structure induces a E1(S)-Dirac structure. This result will be used
in section 4.2.
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Let L be a vector sub-bundle of E1(M) which is maximally isotropic under the symmetric
pairing 〈,〉+ and S be a submanifold of M. If x is a point of S, we may define the vector space
(LS)x by

(LS)x = Lx ∩ ((TxS × R) ⊕ (T ∗
x M × R))

Lx ∩ ({0} ⊕ ((TxS)◦ × {0})) (4.1)

where (TxS)◦ is the annihilator of TxS, that is, (TxS)◦ = {
α ∈ T ∗

x M/α|Tx S = 0
}
. We have

that the linear map (LS)x → (TxS × R) ⊕ (T ∗
x S × R) given by

[(u, λ) + (α, µ)] �→ (u, λ) +
(
α|Tx S, µ

)
(4.2)

is a monomorphism and thus (LS)x can be identified with a subspace of (TxS × R)⊕
(T ∗

x S × R). Moreover, using the results of section 1.4 in [2], we deduce that (LS)x is a
maximally isotropic subspace of (TxS ×R)⊕ (T ∗

x S ×R) under the symmetric pairing 〈,〉+. In
particular, this implies that dim (LS)x = dim S + 1, for all x ∈ S. In addition, we may prove
the following proposition.

Proposition 4.1. Let L be a E1(M)-Dirac structure and S be a submanifold of M. If the
dimension of Lx ∩((TxS ×R)⊕(T ∗

x M ×R)) keeps constant for all x ∈ S (or, equivalently, the
dimension of Lx ∩ ({0}⊕ ((TxS)◦ × {0})) keeps constant for all x ∈ S) then LS = ⋃

x∈S(LS)x

is a vector sub-bundle of E1(S) and, furthermore, LS is a E1(S)-Dirac structure.

Proof. It is clear that LS is a maximally isotropic vector sub-bundle of E1(S) under the
symmetric pairing 〈,〉+.

Now, we consider the vector bundle L̂S over S such that the fibre (L̂S)x of L̂S over x ∈ S

is given by

(L̂S)x = Lx ∩ ((TxS × R) ⊕ (T ∗
x M × R)).

Denote by iS : L̂S → L the inclusion map, by πS : L̂S → LS the canonical projection and by
TL (respectively, TLS

) the section of ∧3L∗ (respectively, ∧3L∗
S) associated with the isotropic

vector sub-bundle L (respectively, LS). The map iS (respectively, πS) is a monomorphism
(respectively, epimorphism) of vector bundles. Furthermore, if ei = (Xi, fi) + (αi, gi) ∈
	(L̂S), with i ∈ {1, 2, 3}, then, from (2.6) and proposition 2.2, we get that
(
π∗

S TLS

)
(e1, e2, e3) = 1

2

∑
Cycl.(e1,e2,e3)

(
i[X1,X2]α3 + g3(X1(f2) − X2(f1))

+ X3
(
iX2α1 + f2g1

)
+ f3

(
iX2α1 + f2g1

))
= (i∗

STL)(e1, e2, e3) = 0.

Therefore, π∗
S TLS

= 0 and, since πS is an epimorphism of vector bundles, we conclude that
TLS

= 0. This implies that LS is a E1(S)-Dirac structure. �

4.2. The induced structure on the leaves of the characteristic foliation of a E1(M)-Dirac
structure

Let L be a E1(M)-Dirac structure. Denote by (L, [,]L, ρL) the associated Lie algebroid and
by φL ∈ 	(L∗) the 1-cocycle defined by (2.10).

We consider the bundle map (ρL, φL) : L → T M × R given by

(ρL, φL)(ex) = (ρL(ex), φL(x)(ex)) (4.3)

for ex ∈ Lx and x ∈ M . Then, we may define the 2-form 9L(x) on the vector space
(ρL, φL)(Lx) by

9L(x) ((ρL, φL) ((e1)x), (ρL, φL) ((e2)x)) = 〈(e1)x, (e2)x〉− , (4.4)
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for (e1)x, (e2)x ∈ Lx, 〈,〉− being the natural skew-symmetric pairing on (TxM ×R)⊕(T ∗
x M ×

R). Since L is a isotropic vector sub-bundle of E1(M) under the symmetric pairing 〈,〉+, we
deduce that the 2-form 9L(x) is well defined. Note that if e1, e2 ∈ 	(L) then one may consider
the function 9L((ρL, φL)(e1), (ρL, φL)(e2)) ∈ C∞(M, R) given by

9L((ρL, φL)(e1), (ρL, φL)(e2))(x) = 9L(x)((ρL, φL)((e1)x), (ρL, φL)((e2)x))

for all x ∈ M.

In fact, if ei = (Xi, fi) + (αi, gi), with i ∈ {1, 2}, we have that

9L((X1, f1), (X2, f2)) = iX2α1 + f2g1. (4.5)

Now, let FL be the characteristic foliation of the E1(M)-Dirac structure L and F be a leaf
of FL. If x is a point of F, we will denote by (LF )x the vector subspace of (TxF × R)⊕
(T ∗

x F × R) given by (see section 4.1)

(LF )x = Lx ∩ ((TxF × R) ⊕ (T ∗
x M × R))

Lx ∩ ({0} ⊕ ((TxF )◦ × {0})) .

Then, we will prove that LF = ⋃
x∈F (LF )x defines a E1(F )-Dirac structure and we will

describe the nature of LF .

Theorem 4.2. Let L be a E1(M)-Dirac structure and F be the leaf of the characteristic foliation
FL passing through x0 ∈ M . Then, LF = ⋃

x∈F (LF )x defines a E1(F )-Dirac structure and
we have two possibilities:

(i) If ker
(
ρL|Lx0

) �⊆ 〈φL(x0)〉◦, the E1(F )-Dirac structure LF comes from a precontact
structure ηF on F, that is, LF = LηF

. In this case, F is said to be a precontact leaf.
(ii) If ker

(
ρL|Lx0

) ⊆ 〈φL(x0)〉◦, the E1(F )-Dirac structure LF comes from a lcp locally
conformal presymplectic structure (F , ωF ) on F, that is, LF = L(F ,ωF ). In this case, F
is said to be a lcp locally conformal presymplectic leaf.

Proof. From the definition of FL, it follows that

(L̂F )x = Lx ∩ ((TxF × R) ⊕ (T ∗
x M × R)) = Lx for all x ∈ F.

Thus, since L is a maximally isotropic vector sub-bundle of E1(M) under the symmetric pairing
〈,〉+, we obtain that dim (L̂F )x = dim M + 1, for all x ∈ F . Therefore, using proposition 4.1,
we deduce that LF defines a E1(F )-Dirac structure.

Next, we will distinguish the two cases:

(i) Assume that ker
(
ρL|Lx0

) �⊆ 〈φL(x0)〉◦. Then, from theorem 3.2, we have that
ker (ρL|Lx

) �⊆ 〈φL(x)〉◦, for all x ∈ F . This implies that the map (ρL, φL)|Lx
: Lx →

TxF × R is a linear epimorphism, for all x ∈ F (see (4.3)). Consequently, the restriction
of 9L to F defines a section of the vector bundle ∧2(T ∗F × R) → F , i.e. a pair
(&F , ηF ) ∈ 2(F ) × 1(F ). The relation between 9L and (&F , ηF ) is given by

9L(x)((u1, λ1), (u2, λ2)) = &F (x)(u1, u2) + λ1ηF (x)(u2) − λ2ηF (x)(u1) (4.6)

for all x ∈ F and (u1, λ1), (u2, λ2) ∈ TxF × R.
Now, suppose that (u, λ) + (α, µ) ∈ (L̂F )x = Lx , with x ∈ F . From (2.1), (4.4) and

(4.6), it follows that

(iu&F (x) + ληF (x))(v) + ν(−ηF (x)(u)) = α(v) + νµ

for all (v, ν) ∈ TxF × R, that is, α|Tx F = iu&F (x) + ληF (x) and µ = −ηF (x)(u). In
other words, if we consider (LF )x to be a subspace of (TxF × R) ⊕ (T ∗

x F × R), we have
that

(LF )x ⊆ {(u, λ) + (iu&F (x) + ληF (x), −ηF (x)(u))/(u, λ) ∈ TxF × R}.
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But, since dim (LF )x = dim F + 1, we deduce that

(LF )x = {(u, λ) + (iu&F (x) + ληF (x), −ηF (x)(u))/(u, λ) ∈ TxF × R}.
Thus,

	(LF ) = {(X, f ) + (iX&F + f ηF , −iXηF )/(X, f ) ∈ X(F ) × C∞(F, R)}. (4.7)

Finally, using (4.7) and the fact that LF is a E1(F )-Dirac structure, we conclude that (see
section 2.3, example 3),

&F = dηF (4.8)

and LF = LηF
.

(ii) Assume that ker
(
ρL|Lx0

) ⊆ 〈φL(x0)〉◦. Then, from theorem 3.2, we obtain that
ker (ρL|Lx

) ⊆ 〈φL(x)〉◦, for all x ∈ F . This implies that the map

ϕx = pr1|(ρL,φL)(Lx) : (ρL, φL)(Lx) → ρL(Lx) = TxF

is a linear isomorphism, for all x ∈ F , where pr1 : TxF × R → TxF is the projection
onto the first factor.

Therefore, 9L induces a 2-form F on F which is characterized by the condition

F (x)(ρL((e1)x), ρL((e2)x)) = 9L(x)((ρL, φL)((e1)x), (ρL, φL)((e2)x)) (4.9)

for x ∈ F and (e1)x, (e2)x ∈ Lx . Moreover, since S
φL

F = F , theorem 3.2 allows us to introduce
the closed 1-form ωF on F characterized by (3.5).

Now, suppose that (u, λ) + (α, µ) ∈ (L̂F )x = Lx , with x ∈ F . From (2.1), (2.10), (3.5),
(4.4) and (4.9), it follows that λ = −ωF (x)(u) and that α|Tx F = iuF (x) + µωF (x). In
other words, if we consider (LF )x to be a subspace of (TxF × R) ⊕ (T ∗

x F × R) then, since
dim (LF )x = dim F + 1, we deduce that

(LF )x = {(u, −ωF (x)(u)) + (iuF (x) + µωF (x), µ)/(u, µ) ∈ TxF × R}.
Thus,

	(LF ) = {(X, −ωF (X)) + (iXF + f ωF , f )/(X, f ) ∈ X(F ) × C∞(F, R)}. (4.10)

Finally, using that ωF is closed, (4.10) and the fact that LF is a E1(F )-Dirac structure, we
conclude that the pair (F , ωF ) is a lcp structure on F (see section 2.3, example 2) and that
LF = L(F ,ωF ). �

Example 4.3

1. Dirac structures. Let L̃ ⊆ T M ⊕ T ∗M be a Dirac structure on M and L be the E1(M)-
Dirac structure associated with L̃ (see (2.11)). We know that the characteristic foliations FL̃

and FL associated with L̃ and L, respectively, coincide (see section 2.3, example 1). Thus,
if F̃ is a leaf of FL̃ then, using theorem 4.2 and the fact that the 1-cocycle φL identically
vanishes, it follows that F̃ carries an induced lcp structure (F̃ , ωF̃ ). Moreover, from the
definition of ωF̃ (see (3.5)), we obtain that ωF̃ = 0, that is, F̃ is a presymplectic form on F̃ .
Therefore, we deduce a well-known result (see [2]): the leaves of the characteristic foliation
FL̃ are presymplectic manifolds.

2. Locally conformal presymplectic structures. Let (, ω) be a lcp structure on a manifold
M and L(,ω) be the corresponding E1(M)-Dirac structure (see (2.14)). It is clear that
FL(,ω)

(x) = TxM , for all x ∈ M , and thus there is only one leaf of the foliation FL(,ω)
,

namely, M. Besides, since ker
(
ρL(,ω) |(L(,ω))x

) ⊆ 〈
φL(,ω)

(x)
〉◦

, for all x ∈ M (see section 2.3,
example 2), M carries an induced lcp structure which is just (, ω).
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3. Precontact structures. Let η be a precontact structure on a manifold M and denote by
Lη the corresponding E1(M)-Dirac structure (see (2.16)). As in the case of a lcp structure,
there is only one leaf of the characteristic foliation FLη

: the manifold M. In addition, since
ker

(
ρLη |(Lη)x

) �⊆ 〈
φLη

(x)
〉◦

, for all x ∈ M (see section 2.3, example 3), M carries an induced
precontact structure. Such a structure is defined by the 1-form η.

4. Jacobi structures. Suppose that (), E) is a Jacobi structure on a manifold M and let
L(),E) be the corresponding E1(M)-Dirac structure. We know that the characteristic foliation
FL(),E)

of L(),E) is just the characteristic foliation associated with the Jacobi structure (), E)

(see section 2.3, example 4). Moreover, using that the Lie algebroid
(
L(),E), [,]L(),E)

, ρL(),E)

)
can be identified with the Lie algebroid

(
T ∗M × R, [[,]](),E), #̃(),E)

)
and that, under this

identification, the 1-cocycle φL(),E)
is the pair (−E, 0), we obtain that if x0 is a point of M then

ker
(
ρL(),E)|(L(),E))x0

)
⊆ 〈

φL(),E)
(x0)

〉◦ ⇐⇒ E(x0) ∈ #)(T ∗
x0M). (4.11)

Thus, if F is the leaf of FL(),E)
passing through x0 ∈ M and E(x0) ∈ #)

(
T ∗

x0
M

)
, from (4.11)

and theorem 4.2, it follows that F carries an induced lcp structure (F , ωF ). In fact, using
(2.1), (3.5), (4.4) and (4.9), we have that

F (y)(#)(α1), #)(α2)) = α1(#)(α2)) ωF (y)(#)(α1)) = α1(E(y))

for all y ∈ F and α1, α2 ∈ T ∗
y M . Therefore, the pair (−F , ωF ) is the locally conformal

symplectic structure on F induced by the Jacobi structure (), E).
On the other hand, if F is the leaf of FL(),E) passing through x0 ∈ M and

E(x0) �∈ #)

(
T ∗

x0
M

)
then, from (4.11) and theorem 4.2, we obtain that the E1(F )-Dirac

structure comes from a precontact structure ηF on F. In addition, E(y) �∈ #)(T ∗
y M) and

TyF = #)(T ∗
y M) ⊕ 〈E(y)〉, for all y ∈ F . Moreover, using (2.1), (4.4) and (4.6), we get that

ηF (y)(#)(α) + λE(y)) = −λ

for all y ∈ F, α ∈ T ∗
y M and λ ∈ R. Consequently, −ηF is the contact structure on F induced

by the Jacobi structure (), E).
In conclusion, we deduce a well-known result (see [13, 19]): the leaves of the characteristic

foliation of a Jacobi manifold are contact or locally conformal symplectic manifolds.

5. Homogeneous Poisson structures. Let (M, 
, Z) be a homogeneous Poisson manifold and
L(
,Z) be the corresponding E1(M)-Dirac structure (see (2.18)). Using that the Lie algebroid(
L(
,Z), [,]L(
,Z)

, ρL(
,Z)

)
can be identified with the Lie algebroid

(
T ∗M ×R, [[,]](
,Z), #̃(
,Z)

)
and that, under this identification, the 1-cocycle φL(
,Z)

is the pair (0, 1) (see section 2.3,
example 5), we obtain that if x0 is a point of M then

ker
(
ρL(
,Z) |(L(
,Z))x0

)
⊆ 〈

φL(
,Z)
(x0)

〉◦ ⇐⇒ Z(x0) �∈ #


(
T ∗

x0
M

)
. (4.12)

Thus, if x0 is a point of M and F is the leaf of the characteristic foliationFL(
,Z)
passing through

x0, we will distinguish two cases:

(a) Z(x0) ∈ #


(
T ∗

x0
M

)
. In such a case, from (2.20), (4.12) and theorem 3.2, it follows that

TyF = FL(
,Z)
(y) = F
(y), for all y ∈ F , where F
 is the symplectic foliation of

the Poisson manifold (M, 
). Therefore, F is the leaf of F
 passing through x0. In
addition, using theorem 4.2, we deduce that the induced E1(F )-Dirac structure comes
from a precontact structure ηF on F. Moreover, from (2.1), (4.4), (4.6) and (4.8), we have
that

ηF (y)(#
(α1)) = −α1(Z(y)) dηF (y)(#
(α1), #
(α2)) = α1(#
(α2))
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for all y ∈ F and α1, α2 ∈ T ∗
y M . This implies that dηF is, up to sign, the symplectic

2-form of F.
(b) Z(x0) �∈ #


(
T ∗

x0
M

)
. In such a case, from (2.20) and (4.12), we get that TyF =

FL(
,Z)
(y) = F
(y) ⊕ 〈Z(y)〉, for all y ∈ F . Consequently, the dimension of F is

odd and the leaf F
 of the foliation F
 passing through x0 is a submanifold of F of
codimension one. Furthermore, the induced E1(F )-Dirac structure comes from a lcp
structure (F , ωF ) on F and, using (2.1), (3.5), (4.4) and (4.9), it follows that

F (y)(#
(α1) + λ1Z(y), #
(α2) + λ2Z(y)) = α1(#
(α2))

ωF (y)(#
(α1) + λ1Z(y)) = λ1

for all y ∈ F, α1, α2 ∈ T ∗
y M and λ1, λ2 ∈ R. Note that if i : F
 → F is the canonical

inclusion, we deduce that i∗ωF = 0 and that −i∗F is the symplectic 2-form on F
.

Thus, if the dimension of F is 2n + 1, we obtain that ωF ∧ n
F = ωF ∧ F ∧ (n· · · ∧F is

a volume form on F.

5. Dirac structure associated with a E1(M )-Dirac structure and characteristic foliations

Let M be a differentiable manifold and L be a vector sub-bundle of E1(M).
We consider the vector sub-bundle L̃ of T (M ×R)⊕T ∗(M ×R) such that the fibre L̃(x,t)

of L̃ over (x, t) ∈ M × R is given by

L̃(x,t) =
{(

u + λ
∂

∂t |t

)
+ et (α + µ dt|t )/(u, λ) + (α, µ) ∈ Lx

}
(5.1)

where Lx is the fibre of L over x. Note that the linear map ψ(x,t) : Lx → L̃(x,t) given by

ψ(x,t)((u, λ) + (α, µ)) =
(

u + λ
∂

∂t |t

)
+ et (α + µ dt|t ) (5.2)

is an isomorphism of vector spaces, for all (x, t) ∈ M × R. Using this fact, (2.3) and (2.12),
we deduce the following result.

Proposition 5.1. L is a E1(M)-Dirac structure if and only if L̃ is a Dirac structure on M × R.

Now, suppose that L is a E1(M)-Dirac structure and denote by (L, [,]L, ρL) the associated
Lie algebroid and by φL the 1-cocycle of (L, [,]L, ρL) given by (2.10). Then, we may
consider the Lie algebroid structure

(
[,]−φL

L , ρ̄
φL

L

)
defined by (3.1) on the vector bundle

L̄ = L × R → M × R.
On the other hand, let L̃ be the Dirac structure on M ×R associated with L, (L̃, [,]∼L̃, ρ̃L̃)

be the corresponding Lie algebroid over M × R and FL̃ be the characteristic foliation of L̃

(see section 2.3, example 1).
It is clear that the linear maps ψ(x,t), (x, t) ∈ M × R, induce an isomorphism of vector

bundles ψ̃ between L̄ and L̃. Moreover, we have

Lemma 5.2. The map ψ̃ is an isomorphism of Lie algebroids over the identity, that is,

ρ̃L̃(ψ̃(ē1)) = ρ̄
φL

L (ē1) ψ̃[ē1, ē2]−φL

L = [ψ̃(ē1), ψ̃(ē2)]∼
L̃

(5.3)

for ē1, ē2 ∈ 	(L̄). Thus, the characteristic foliation FL̃ of the Dirac structure L̃ coincides
with the Lie algebroid foliation FL̄.

Proof. Using (2.2), (2.3), (2.10), (2.12), (2.13), (3.1) and (5.2), we deduce that (5.3) holds. In
addition, from (5.3), it follows that FL̃(x, t) = FL̄(x, t), for all (x, t) ∈ M × R. �
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Now, assume that F̃ is a leaf of the foliationFL̃ = FL̄. Then, we know that F̃ is a presymplectic
manifold with presymplectic 2-form F̃ characterized by the condition

F̃ (x, t)
(
ρ̃L̃

(
(ẽ1)(x,t)

)
, ρ̃L̃

(
(ẽ2)(x,t)

)) = 〈
(ẽ1)(x,t), (ẽ2)(X,t)

〉
− (5.4)

for all (x, t) ∈ M ×R and (ẽ1)(x,t), (ẽ2)(x,t) ∈ L̃(x,t), where 〈,〉− is the natural skew-symmetric
pairing on T(x,t)(M × R) ⊕ T ∗

(x,t)(M × R) (see [2] and examples 4.3).
Next, we will discuss the relation between the leaves of FL̃ and the leaves of the

characteristic foliation FL associated with L. In addition, we will describe the relation between
the induced structures on them.

Theorem 5.3. Let L be a E1(M)-Dirac structure and L̃ be the Dirac structure on M × R

associated with L. Suppose that (x0, t0) ∈ M × R and that F and F̃ are the leaves of FL and
FL̃ passing through x0 and (x0, t0), respectively. Then
(i) if F is a precontact leaf we have that F̃ = F × R. Moreover, if ηF is the precontact
structure on F ,

F̃ = et
(
(π1|F̃ )∗(dηF ) + dt ∧ (π1|F̃ )∗(ηF )

)
where π1|F̃ : F̃ → F is the restriction to F̃ of the canonical projection π1 : M × R → M .
(ii) if F is a lcp leaf and (F , ωF ) is the lcp structure on F then π1(F̃ ) = F, π1|F̃ : F̃ → F

is a covering map and F̃ is diffeomorphic to a Galois covering of F associated with ωF .
Furthermore, if iF̃ : F̃ → M × R is the canonical inclusion and σ̃ ∈ C∞(F̃ , R) is the
function given by σ̃ = −(iF̃ )∗(t), we have that

dσ̃ = (π1|F̃ )∗(ωF ) F̃ = e−σ̃ (π1|F̃ )∗(F ).

Proof. (i) Since F is a precontact leaf, it follows that ker
(
ρL|Lx0

) �⊆ 〈φL(x0)〉◦ (see
theorem 4.2). Thus, from theorem 3.3 and lemma 5.2, we deduce that F̃ = F × R.

On the other hand, if (x, t) ∈ F̃ , (ẽi )(x,t) ∈ L̃(x,t), i ∈ {1, 2}, and (ẽi )(x,t) =(
ui + λi

∂
∂t |t

)
+ et (αi + µi dt|t ), with (ui, λi) + (αi, µi) ∈ Lx then, using (4.4), (4.6), (4.8)

and (5.4), we get

F̃ (x, t)
(
ρ̃L̃((ẽ1)(x,t)), ρ̃L̃

(
(ẽ2)(x,t)

)) = 1
2 et (α1(u2) + λ2µ1 − α2(u1) − µ2λ1)

= et ((π1|F̃ )∗(dηF ) + dt ∧ (π1|F̃ )∗(ηF ))(x, t)
(
ρ̃L̃

(
(ẽ1)(x,t)

)
, ρ̃L̃

(
(ẽ2)(x,t)

))
.

This implies that F̃ = et ((π1|F̃ )∗(dηF ) + dt ∧ (π1|F̃ )∗(ηF )).
(ii) If F is a lcp leaf then ker (ρL|Lx0

) ⊆ 〈φL(x0)〉◦ (see theorem 4.2). Therefore, from theorem
3.3 and lemma 5.2, we obtain that π1(F̃ ) = F , that π1|F̃ : F̃ → F is a covering map, that F̃

is diffeomorphic to a Galois covering of F associated with ωF and that dσ̃ = (π1|F̃ )∗(ωF ).
Finally, if (x, t) ∈ F̃ , (ẽi)(x,t) ∈ L̃(x,t), i ∈ {1, 2}, and (ẽi)(x,t) = (

ui + λi
∂
∂t |t

)
+ et (αi +

µi dt|t ), with (ui, λi) + (αi, µi) ∈ Lx then, using (4.4), (4.9), (5.4) and the definition of σ̃ , we
deduce

F̃ (x, t)(ρ̃L̃

(
(ẽ1)(x,t)

)
, ρ̃L̃

(
(ẽ2)(x,t))

) = 1
2 et (α1(u2) + λ2µ1 − α2(u1) − µ2λ1)

= (e−σ̃ (π1|F̃ )∗(F ))(x, t)
(
ρ̃L̃

(
(ẽ1)(x,t)

)
, ρ̃L̃

(
(ẽ2)(x,t)

))
.

This implies that F̃ = e−σ̃ (π1|F̃ )∗(F ). �

Example 5.4

1. Dirac structures. Let L be a E1(M)-Dirac structure which comes from a Dirac structure
on M and L̃ be the associated Dirac structure on M × R. If x0 is a point of M and F is the
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leaf of the characteristic foliation FL passing through x0, then F is a presymplectic manifold
with presymplectic 2-form F (see examples 4.3). Moreover, since FL(x) = FL̃(x, t), for
all (x, t) ∈ M × R, we deduce that the leaf F̃ of FL̃ passing through (x0, t0) ∈ M × R is
F̃ = F × {t0}. In addition, from theorem 5.3, it follows that F̃ = et0F .

2. Precontact structures. Let η be a precontact structure on a manifold M and Lη be the
associated E1(M)-Dirac structure. Then, the characteristic foliation FLη

has a unique leaf, the
manifold M (see examples 4.3). Furthermore, if L̃η is the Dirac structure on M ×R associated
with Lη, we obtain that L̃η is the graph of the presymplectic 2-form ̃ on M × R given by

̃ = et ((π1)
∗(dη) + dt ∧ (π1)∗η).

In other words,

	(L̃η) = {X̃ + iX̃̃/X̃ ∈ X(M × R)} ⊆ X(M × R) ⊕ 1(M × R).

On the other hand, using theorem 5.3, we deduce a well-known result (see [2]): the
characteristic foliation FL̃η

of L̃η also has a unique leaf F̃ (the manifold M × R) and the
presymplectic 2-form F̃ on F̃ is just ̃.

3. Jacobi structures. Suppose that (), E) is a Jacobi structure on a manifold M. Then, it is
well known that the 2-vector )̃ on M × R given by )̃ = e−t

(
) + ∂

∂t
∧ E

)
defines a Poisson

structure on M ×R (see [22]; see also [4, 13, 29]). Thus, one may consider the Dirac structure
L̃)̃ on M × R associated with )̃ (see [2]). In fact, we have that

	(L̃)̃) = {#)̃(α̃) + α̃/α̃ ∈ 1(M × R)}.
Moreover, if L(),E) is the E1(M)-Dirac structure induced by the Jacobi structure (), E), it is
easy to prove that the Dirac structure L̃(),E) on M × R associated with L(),E) is isomorphic
to L̃)̃. Therefore, using theorem 5.3 (see also examples 4.3), we directly deduce the results
of Guedira–Lichnerowicz (see section 3.16 in [13]) about the relation between the leaves of
the characteristic foliation of the Jacobi manifold (M, ), E) and the leaves of the symplectic
foliation of the Poisson manifold (M × R, )̃).
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en Cours vol 27 (Paris: Hermann) pp 39–49
[4] Dazord P, Lichnerowicz A and Marle Ch M 1991 Structure locale des variétés de Jacobi J. Math. Pures Appl.

70 101–52
[5] Dirac P A M 1964 Lectures on Quantum Mechanics (New York: Yeshiva University)
[6] Dorfman I 1993 Dirac structures and integrability of nonlinear evolution equations Nonlinear Science: Theory

and Applications (Chichester: Wiley)
[7] Fernandes R L 2000 Lie algebroids, holonomy and characteristic classes Preprint math.DG/0007132 (Adv.

Math. at press)
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